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Abstract

This paper studies a transversely isotropic rod containing a single cylindrical inclusion with axisymmetric eigen-
strains. The analytical elastic solution is obtained for the displacements, stresses and elastic strain energy of the rod. The
effects of microstructural parameters and its evolution on the elastic stress and strain fields as well as the strain energy of
the rod are quantitatively demonstrated through examples.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Experimental observations on tensile test of NiTi polycrystalline shape memory alloy wires and strips
have shown that the deformation in the superelastic region is realized by the reversible propagation of
single band and multi-bands during the forward and reverse transformations (Leo et al., 1993; Lin et al.,
1994; Shaw and Kyriakides, 1995, 1997). These phenomena motivated the study of a new type of inclusion-
matrix system: an infinite circular cylindrical rod containing a single inclusion with uniform axisymmetric
eigenstrains (Zhong et al., 2000). This kind of inclusion problem is different from the traditional Eshelby-
type inclusion problems (Eshelby, 1957; Mura, 1987; among others) in that the inclusion is not fully
bounded by the matrix. The solution of such a new inclusion problem has been employed to predict the
force—displacement relationship in the uniaxial tensile loading of the SMA wire specimen under isothermal
or very slow loading rate cases (Sun and Zhong, 2000).

In our previous paper (Zhong et al., 2000), the assumption of isotropy was made for the elastic properties
of the rod, while in the present paper we considered a more general case of transversely isotropic rod
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containing a single cylindrical inclusion with uniform axisymmetric eigenstrains which may apply to
crystallographically textured SMA rods. An analytical solution for the displacements, stresses and elastic
strain energy of the rod is obtained. In Section 2, the basic equations and boundary conditions for the
problem are described. In Section 3, solution techniques to determine the stress and displacement fields as
well as the strain energy of the rod are formulated. The results are discussed through examples in Section 4,
and finally a summary is given in Section 5.

2. Problem statement and basic equations

Consider an infinite long cylindrical rod with a circular cross section of radius a which contains a uniform
axisymmetric eigenstrain ¢&j; (induced by phase transformation or other sources) in a cylindrical inclusion of
height /, as shown in Fig. 1. A cylindrical coordinate system (r, 0,z) is introduced with the z-axis placed
along the axis of revolution of the cylinder. The elastic properties of the rod are assumed to be transversely
isotropic with the axial direction of symmetry coinciding with the z-axis. The elastic constants of the in-
clusion are the same as the remaining matrix (Note: in real martensitic transformation in SMA, the Young’s
modulus of martensite is less than that of austenite, then it will be treated as an inhomogeneous inclusion
problem). The uniform axisymmetric eigenstrain ¢;; will cause nonuniform deformation and internal stress
in the rod and its nonzero components can be given as

e =8 & =6 (1)

”

The corresponding displacement components are denoted by u,., ug, u., the component uy vanishes and wu,, u,
are independent of 0. The nonzero strain components ¢,, &, ¢, and y,, are calculated by the following strain-
displacement relations:

_ Ou, 9_& P—GMZ . Ou,  Ou,
Tor T ¥ T T o

(2)

&

The corresponding stress components o,, 6y, ¢, and 7, in the inclusion (|z| < //2,r < a) can be obtained
as

- >
€lo - :

Fig. 1. A schematic of a cylindrical rod with an inclusion.
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o, =cnle —¢€)+calen — &) +cinle. — &)

o9 =cn(e —&) +cinlen— &) +cisle. — &)

0. =ci3(e — &) +c13(eg — &) + c33(8. — €))
Orz = Ca4)),
while their counterparts in the matrix (|z| > [/2,r < a) are obtained as
0, = C11& + C12&9 + C138;
09 = C126r + C1189 + C13€;
(4)

0; = C13& + C138p + C338;
Oz = C447),,
where ¢1, ¢12, 13, ¢33 and cyy are elastic constants of the transversely isotropic rod.

The stress components either in the inclusion or in the matrix should satisfy the equations of equilibrium
as follows:

0o, 00, 0G,— 0y

af‘ 62 r o O (5)
0o, 0o, n [ 0
or 0z ro

Substituting (2)—(4) into (5), we obtain the governing equations for the displacements either in the inclusion
or in the matrix:

00 u, %u,
(c13 + caq) o + (c11 — €13 — caa) (Vzur - ﬁ) —(e1 — 13— 2C44)@ =0
(6)
00 ) %u,
(c13 + cag) =+ caaVou. + (c33 — c13 — 2caa) o5 =0
0z 0z
where V2 = 02/0r + (1/r)0/dr + 8*/32%, © =&, + & + ¢..
The boundary conditions for the lateral surface (r = a) can be written as
0, =0.=0 (r=a (7

which means no force is applied at the lateral surface. The continuity conditions for the traction and
displacement at the planar interface between the inclusion and the matrix require that the displacements u,,
u, and the stresses o, g,. be continuous at the interface z = //2 and z = —//2. The stress-free end condition
of the infinite cylindrical rod can be written as

6, =0.=0 (| —o) (8)

In the following sections, the deformation and stress field in the rod will be determined using the above
basic equations and boundary conditions.
3. Solution
3.1. Decomposition of the problem

The solution of the above original problem is the superposition of the solutions of the following two sub-
problems:
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u,:u1+uil uz:ui+u?
6, =0.+ 0 og=0),+ 0y 9)

| 11 | 1T
0; =0, + 0, Oz = 0, + 0,

3.1.1. Sub-problem I
The displacements of the rod are assumed to have the following forms:

l
u=0 ul=1rIz <|z|<§,r<a)

/ /
1_ 1__pt _t
u,=0 u, = FZ (z< 2,r<a> (10)

I'=—¢+¢& (11)

2¢2 /
alzabz—(c’n—&-clg—ﬂ)s”f ol=0.=0 (|z|<§,r<a>
C
33 (12)

The assumed solution of displacements in (10) automatically satisfies the governing equation (6) and the
remote end condition (8) as well as the continuity conditions for the traction and displacement at the in-
terface between the inclusion and the matrix. Unfortunately, the lateral boundary condition (7) is not
satisfied. At the boundary r = a, the solution gives

22 /
o{:—(cll—i—clz——” & o.=0 (|zl<s,r=a
C33 2

/
A=a.=0 (l>5r=a)

In order to satisfy boundary condition (7), an auxiliary solution should be superimposed, which will be
described as sub-problem II.

(13)

3.1.2. Sub-problem II

The same rod, stress free on its two ends, is subjected to uniformly distributed pressure p over |z| < /2,
as shown in Fig. 2. The basic equations and the boundary conditions at the remote ends are the same as
Egs. (2)-(6) and (8) (let &; = 0), while the lateral boundary condition can be described as

l
a'=-p dl=0 (|z| <§,r:a)

, (14)
ol =gl =0 (z| >5,r=a)
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Fig. 2. A schematic of a cylindrical rod subjected to a distributed pressure p.

where

2¢3
p:—(cll-i-clz—?l;)f}jf (15)

To obtain the solution of sub-problem II, a stress function y is introduced following the solution
technique given in the book by Lekhnitski (1981), such that

!l :A62_(//
" oroz (16)
oy 10y %y
1
p— —_—— B—
Uz or? + r or + 0z2
where
A:_6‘13+C44 B:%
C11 C11

(17)

and  should satisfy the equation

Viviy =0

Where V? = 8%/0r? + (1/r)0/0r + 2,(0%/3z%), i = 1,2; and the constants, 4, and 4, are given by
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. d+Vd>—14b d —d> —4b

A > Iy = — (19)
in which
b 33 d— 11033 — 2C13Ca4 — 0%3 (20)

Cl1 C11C44

Eq. (18) is obtained by substituting (16) into (6). It can be shown that p; and p, are either real or complex
and they are never purely imaginary (Lekhnitski, 1981). For an isotropic material, we have c¢;; = ¢33,
c1p =c13, caa = (c11 —c13)/2 and 4} = 4, = 1. In this special case, Eq. (18) reduces to the well-known bi-
harmonic equation

V2V =0 (21)

Accordingly, the stresses are written as

o 1 & o
o = (end +cp3) WZZ + (124 + c13) p Wgz + 01336—;5

o 1 @2 o
O'g = (C‘]zA + 013) —a}";gz + (CHA + 6‘13) ; —argz + C13B—Zlf

0'? = (c13d + 033)( oy + L&y ) 63—w

ar2dz ' r ordz

dy By 1% 1y
I _ — AR or
0,, = C44(A - B) 0roz? + or3 r or? r? or

Hence the problem is reduced to the determination of stress function i through the boundary conditions
(14) and (8), which will be detailed in the next section.

3.2. Solution of sub-problem II

The function ¥ can be assumed as

¥ = 2pd’ /0 N [p(k)zo (k\/ﬂ 2) +1 (k\/f g)] £(k) sin% sin% dk (23)

where I is the zero-order modified Bessel function of the first kind, p(k) and f (k) are functions which will
be determined later, 4, and 4, are given by (19). It is easy to verify that this assumed form of function
satisfies Eq. (18). The corresponding displacements and stresses can be obtained from (16) and (22) as
follows:

W' = 2pa / "4 [\//Tl p(K)]y (k\/ﬁj 2) /72l (k\/f 2)} R cos%z sin <L gk
0

2a

= 2pa [ [ = Bt (kA ) + (2= B (/)| 0 sin s 5 e
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aEZ@Ax“@¢+ng_quwh@¢ﬂﬂ+«q¢+ng—q@m@¢fa
+ (cp—en)— {\/—p Il(k\/_ +\/—[1<k\/_)}} cos% sin%dk
= Zp/oOC {[(cle + c13)A1 — en3Blp(k)Iy ) [(c124 + c13) 22 — c13B]ly (k\/A_g)

)
(v

—(cn—cn)— {\/—p (\/T£>+\/—Il<k )}}f(k)k%os%sin%dk
(kv

(25)
Gil = Zp/ {[(6‘1314 + Cz3)/u1 — C33B 10 )
0
kz . Kkl
+ [(6‘1314 + C33)/12 — C333]10 (kﬁ;) }f(k)k3 COS; SIH% dk

ol = 2pcuy / {(n— 4= BV Ep@®n (/A ")

0

. . 3 sin ' sin &

A — B\ 2l (k\/A_a) }f(k)k sin— sin >~ dk
In order to satisfy boundary condition (14), functions p(k) and f'(k) are found to be

(i1 — A = B)WAL (kvV/Z)

f(k) = nlk4{[(0111‘1 + c13)A1 — ci3Blp(k) Iy (k\/:ﬂ) + [(end + c13) 42 — ci3Bll (k\/};)
¥ (i —en) {\/“p ) (k\/fl) NG (k\/;j)]}] (27)

In the derivation of (27), we have used the following formula:

/
f z
or |z| <2

S Nla
—~
[\®)
[oze]
=

*1 k kl
/ fcos—z sin— dk =
0o k a 2a l
for |z] >5

p(k) can be shown to have another form of expression,

[(c134 + ¢33) A2 — c3BIN A1 (k/75)
[(c134 + c33) 1 — e3BIN oy (kn/21)
It is therefore easy to check by using (29) or (26) that ¢! and ¢!! satisfy the stress-free boundary con-

ditions at infinity in the sense of Saint-Venant principle, i.e., [ o' ds = 0 and J. o1 ds = 0, where s denotes
the circular cross section of the rod.

p(k) = — (29)

3.3. Elastic strain energy

The total solution of the original problem is obtained from (9) by superposing the solutions of sub-
problems I and /1. The total elastic strain energy W of the rod can be given as (Mura, 1987)
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WZE VO','jSl-jdV: —E[(ar—&—ag)el +0'282]VQ (30)

where V is the entire domain of the rod and ¥, represents the volume of the inclusion (V, = na®l); &;; is the
elastic strain, @,, oy and &, denote the average of stresses o,, oy and . over the inclusion Q:

1 1 1
o, =— [ 6.dV Gg=— [ oodV @:—/ade 31
i, =7 [0 7 ) (31)
From our above solution it is easy to show that
22 /
G, +05=—2(cn+ —J),*H<—)
G, + 09 <Cll 12 o af| - (32)
a.=0
with
I da [* K\
Hl-]|=1+— in—
(a> + ), kf(k)g(k)(sm 2a> dk (33)

where f'(k) is given in (27) and

glk) = oud + el = 1B p(k), (k\/ﬂ) + [(end + ¢13) 4 — c13B] I (k\/Z)

ven Vo2
[(c124 + c13) 41 — c13B] [(c124 + €13) A2 — c13B] >
+ o o (ky/7) + o 1 (k%) (34)
Hence the elastic strain energy of the rod can be obtained as
2 2
W = (011 +C12 _&>(?T)2H(£)VQ (35)
C33 a

where V, = ma*l is the volume of the inclusion. Since the elastic strain energy is always positive, it requires
that ¢;; 4+ c¢1» — 2¢};/c33 > 0, which is also the condition for a tensile lateral pressure given by (14) and (15).
One can see from (35) that H(I/a) serves as the shape factor of the cylindrical inclusion in the rod. In fact,
H(I/a) plays the similar role as the Eshelby’s tensor S, for ellipsoidal inclusions (Eshelby, 1957). For given
a, &, ci1, Ci2, €13, ¢33 and ca, W is a function of / only.

4. Discussions and examples
Some characteristics of the solution can be observed, as follows:

(1) It should be noted that the derived solution for the transversely isotropic case does not apply for the
isotropic case due to the degeneracy of the Bessel functions. For isotropic cases, 4, = 4, =1, and
the two Bessel function terms become degenerate. Accordingly, the expressions, (24), (25) and (30),
of displacements, stresses and elastic strain energy are not valid for isotropic cases. The solution for
the isotropic case is to add a new Bessel function term that depends on [;(kr/a) in the function .
The detail derivation of the solution of the isotropic case has been given in our previous paper (Zhong
et al., 2000).

(2) We have pointed out in Section 3.1 that p; and p, are either real or complex. When p; and p, are com-
plex they are complex conjugates. By inspection of expressions (24), (25) and (30), and resolving all
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complex terms into their real and imaginary parts, it can be found that the imaginary parts are totally
cancelled each other and only the real parts are left. Therefore, the obtained displacements, stresses and
elastic strain energy are real.

(3) The axial component of eigenstrain & has no contribution to the stresses and the total elastic strain en-
ergy of the rod. It induces only an axial displacement of the rod.

(4) It should be noted that the inclusion-matrix system developed in this paper is a simplified model with
several assumptions. For example, the inclusion is assumed to have the same elastic properties as the
matrix, but the martensite and austenite phases in a real SMA are known to have different elastic mo-
duli. Also, the assumed planar interface between phases is a rather strong constraint of the kinematics
across a transformation front. Other morphologies of the interface might be energetically more favor-
able. These factors must be further incorporated into the model if a quantitative comparison with the
test data of a real SAM is to be made.

As an example, we consider the case with ¢j»/cy; = ¢i3/c11 = 3/7, caa/c11 =2/7 and ¢33/¢;; = 0.5,1.5,2.
Figs. 3 and 4 show the variation of stresses ¢, and o, (normalized by c;¢}) along the positive z-axis (for
r=20,z>0, we have ¢, = gy and 1., = 0) for //a = 10. In the figures the case of an isotropic material
(cra/en = ciz/en = 3/7, caa/cnn =2/7 and ¢33/cy; = 1) is also depicted based on the solution obtained by
Zhong et al. (2000). It can be observed that both ¢, and o, concentrate near the inclusion-matrix interface
(z = 5a) and decrease rapidly to zero away from the interface. The stress g, has a jump across the interface
while o, is still continuous across the interface. The greater c¢s3/cy; value, the higher the stress concentration
near the interface. This means that the stiffening of the rod along the longitudinal direction or the softening
in the transversal direction will increase the stress concentrations. There is almost no interaction between
the stress fields of the two neighboring interfaces for the considered case //a = 10. However, when the two

0.8
isotropic material
06 | 033/C11=0'5
—————— Cy4/Cy;=1.5
04 dl———" 033/011=2
0.2
o
o
g 0.0
~
o
-0.2
-0.4 -
-0.6
'08 T T T T
0 2 4 6 8 10

z/a

Fig. 3. The variation of stresses ¢, normalized by c ¢} along the positive z-axis when / = 10a.
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Fig. 4. The variation of stresses o. normalized by c¢;;¢] along the positive z-axis when / = 10a.
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Fig. 5. The variation of stresses ¢, normalized by c;,¢] along the positive z-axis when / = 2a.
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Fig. 6. The variation of stresses o. normalized by c¢;;¢; along the positive z-axis when / = 2a.

0.7

3 *2
W/(a’c,,e,*)

0.0

—~—

isotropic material
C,44/€4,=0.5
C54/C44=1.5
C/C4=2

L/a

5763

Fig. 7. The variation of the elastic strain energy W (normalized by a’c;¢}?) of the rod as a function of the normalized length of the

inclusion //a.
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interfaces come closer, the interaction of the stress fields of the neighboring interfaces becomes obvious.
This phenomenon can be observed in Figs. 5 and 6 which show the variation of stresses ¢, and o, (nor-
malized by c;,¢}) along the positive z-axis (r = 0,z > 0) for //a = 2. It is seen that the stresses in the center
region of the inclusion do not vanish due to the interaction of the interfaces, and the stress concentration
increases as the two interfaces approach each other. Fig. 7 shows the variation of the elastic strain energy W
(normalized by a’cy;¢}?) of the rod as a function of the normalized length of the inclusion //a for the same
problem. The normalized elastic strain energy for an isotropic material (c2/c1 = c13/ci1 = 3/7,caa/c11 =
2/7 and c33/c;; = 1) is also calculated based on the solution by Zhong et al. (2000) and depicted in the same
figure. Several typical features of the normalized elastic strain energy can be identified. The normalized
elastic strain energy increases monotonically and reaches a peak value as the inclusion grows. Further
growth of the inclusion causes a decrease in the elastic strain energy and very quickly approaches a steady
value. The normalized elastic strain energy increases with the increase of the ratio c33/cy;. This reveals that
the rod will have higher elastic strain energy if the rod is stiffer along the longitudinal direction or softer in
the transversal direction.

5. Summary

An analytical solution is obtained for the axisymmetric deformation of a transversely isotropic rod
containing a single cylindrical inclusion with uniform eigenstrains by means of the principle of superpo-
sition. The original problem is divided into two sub-problems to derive the analytical expressions for the
displacements, stresses and elastic strain energy of the rod. The effects of microstructural parameters and its
evolution on the elastic stress and strain fields as well as the strain energy of the rod are quantitatively
demonstrated through examples. The results show that the stiffening of the rod along the longitudinal
direction or the softening in the transversal direction will increase the stress concentrations near the in-
terface between the inclusion and the matrix. It also reveals that the rod will have higher elastic strain
energy if the rod is stiffer along the longitudinal direction or softer in the transversal direction.
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