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Abstract

This paper studies a transversely isotropic rod containing a single cylindrical inclusion with axisymmetric eigen-

strains. The analytical elastic solution is obtained for the displacements, stresses and elastic strain energy of the rod. The

effects of microstructural parameters and its evolution on the elastic stress and strain fields as well as the strain energy of

the rod are quantitatively demonstrated through examples.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Experimental observations on tensile test of NiTi polycrystalline shape memory alloy wires and strips

have shown that the deformation in the superelastic region is realized by the reversible propagation of

single band and multi-bands during the forward and reverse transformations (Leo et al., 1993; Lin et al.,
1994; Shaw and Kyriakides, 1995, 1997). These phenomena motivated the study of a new type of inclusion-

matrix system: an infinite circular cylindrical rod containing a single inclusion with uniform axisymmetric

eigenstrains (Zhong et al., 2000). This kind of inclusion problem is different from the traditional Eshelby-

type inclusion problems (Eshelby, 1957; Mura, 1987; among others) in that the inclusion is not fully

bounded by the matrix. The solution of such a new inclusion problem has been employed to predict the

force–displacement relationship in the uniaxial tensile loading of the SMA wire specimen under isothermal

or very slow loading rate cases (Sun and Zhong, 2000).

In our previous paper (Zhong et al., 2000), the assumption of isotropy was made for the elastic properties
of the rod, while in the present paper we considered a more general case of transversely isotropic rod
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containing a single cylindrical inclusion with uniform axisymmetric eigenstrains which may apply to

crystallographically textured SMA rods. An analytical solution for the displacements, stresses and elastic

strain energy of the rod is obtained. In Section 2, the basic equations and boundary conditions for the

problem are described. In Section 3, solution techniques to determine the stress and displacement fields as
well as the strain energy of the rod are formulated. The results are discussed through examples in Section 4,

and finally a summary is given in Section 5.

2. Problem statement and basic equations

Consider an infinite long cylindrical rod with a circular cross section of radius a which contains a uniform

axisymmetric eigenstrain e�ij (induced by phase transformation or other sources) in a cylindrical inclusion of

height l, as shown in Fig. 1. A cylindrical coordinate system ðr; h; zÞ is introduced with the z-axis placed

along the axis of revolution of the cylinder. The elastic properties of the rod are assumed to be transversely

isotropic with the axial direction of symmetry coinciding with the z-axis. The elastic constants of the in-
clusion are the same as the remaining matrix (Note: in real martensitic transformation in SMA, the Young�s
modulus of martensite is less than that of austenite, then it will be treated as an inhomogeneous inclusion

problem). The uniform axisymmetric eigenstrain e�ij will cause nonuniform deformation and internal stress

in the rod and its nonzero components can be given as

e�r ¼ e�h ¼ e�1 e�z ¼ e�2 ð1Þ

The corresponding displacement components are denoted by ur, uh, uz, the component uh vanishes and ur, uz
are independent of h. The nonzero strain components er, eh, ez and crz are calculated by the following strain-
displacement relations:

er ¼
our
or

eh ¼
ur
r

ez ¼
ouz
oz

crz ¼
our
oz

þ ouz
or

ð2Þ

The corresponding stress components rr, rh, rz and srz in the inclusion ðjzj < l=2; r < aÞ can be obtained

as

Fig. 1. A schematic of a cylindrical rod with an inclusion.
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rr ¼ c11ðer � e�r Þ þ c12ðeh � e�hÞ þ c13ðez � e�z Þ
rh ¼ c12ðer � e�r Þ þ c11ðeh � e�hÞ þ c13ðez � e�z Þ
rz ¼ c13ðer � e�r Þ þ c13ðeh � e�hÞ þ c33ðez � e�z Þ
rrz ¼ c44crz

ð3Þ

while their counterparts in the matrix ðjzj > l=2; r < aÞ are obtained as

rr ¼ c11er þ c12eh þ c13ez
rh ¼ c12er þ c11eh þ c13ez
rz ¼ c13er þ c13eh þ c33ez
rrz ¼ c44crz

ð4Þ

where c11, c12, c13, c33 and c44 are elastic constants of the transversely isotropic rod.

The stress components either in the inclusion or in the matrix should satisfy the equations of equilibrium

as follows:

orr

or
þ orrz

oz
þ rr � rh

r
¼ 0

orrz

or
þ orz

oz
þ rrz

r
¼ 0

ð5Þ

Substituting (2)–(4) into (5), we obtain the governing equations for the displacements either in the inclusion

or in the matrix:

ðc13 þ c44Þ
oH
or

þ ðc11 � c13 � c44Þ r2ur
�

� ur
r2

�
� ðc11 � c13 � 2c44Þ

o2ur
oz2

¼ 0

ðc13 þ c44Þ
oH
oz

þ c44r2uz þ ðc33 � c13 � 2c44Þ
o2uz
oz2

¼ 0

ð6Þ

where r2 ¼ o2=or2 þ ð1=rÞo=or þ o2=oz2, H ¼ er þ eh þ ez.
The boundary conditions for the lateral surface ðr ¼ aÞ can be written as

rr ¼ rrz ¼ 0 ðr ¼ aÞ ð7Þ

which means no force is applied at the lateral surface. The continuity conditions for the traction and

displacement at the planar interface between the inclusion and the matrix require that the displacements ur,
uz and the stresses rz, rrz be continuous at the interface z ¼ l=2 and z ¼ �l=2. The stress-free end condition

of the infinite cylindrical rod can be written as

rr ¼ rrz ¼ 0 ðjzj ! 1Þ ð8Þ

In the following sections, the deformation and stress field in the rod will be determined using the above

basic equations and boundary conditions.

3. Solution

3.1. Decomposition of the problem

The solution of the above original problem is the superposition of the solutions of the following two sub-

problems:
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ur ¼ uIr þ uIIr uz ¼ uIz þ uIIz

rr ¼ rI
r þ rII

r rh ¼ rI
h þ rII

h

rz ¼ rI
z þ rII

z rrz ¼ rI
rz þ rII

rz

ð9Þ

3.1.1. Sub-problem I

The displacements of the rod are assumed to have the following forms:

uIr ¼ 0 uIz ¼ Cz jzj
�

<
l
2
; r < a

�

uIr ¼ 0 uIz ¼ �C
l
2

z
�

< � l
2
; r < a

�

uIr ¼ 0 uIz ¼ C
l
2

z
�

>
l
2
; r < a

�
ð10Þ

with

C ¼ 2c13
c33

e�1 þ e�2 ð11Þ

The corresponding stresses in the rod are obtained as

rI
r ¼ rI

h ¼ � c11

�
þ c12 �

2c213
c33

�
e�1 rI

z ¼ rI
rz ¼ 0 jzj

�
<

l
2
; r < a

�

rI
r ¼ rI

h ¼ rI
z ¼ rI

rz ¼ 0 jzj
�

>
l
2
; r < a

� ð12Þ

The assumed solution of displacements in (10) automatically satisfies the governing equation (6) and the

remote end condition (8) as well as the continuity conditions for the traction and displacement at the in-

terface between the inclusion and the matrix. Unfortunately, the lateral boundary condition (7) is not

satisfied. At the boundary r ¼ a, the solution gives

rI
r ¼ � c11

�
þ c12 �

2c213
c33

�
e�1 rI

rz ¼ 0 jzj
�

<
l
2
; r ¼ a

�

rI
r ¼ rI

rz ¼ 0 jzj
�

>
l
2
; r ¼ a

� ð13Þ

In order to satisfy boundary condition (7), an auxiliary solution should be superimposed, which will be

described as sub-problem II.

3.1.2. Sub-problem II

The same rod, stress free on its two ends, is subjected to uniformly distributed pressure p over jzj < l=2,
as shown in Fig. 2. The basic equations and the boundary conditions at the remote ends are the same as

Eqs. (2)–(6) and (8) (let e�ij ¼ 0), while the lateral boundary condition can be described as

rII
r ¼ �p rII

rz ¼ 0 jzj
�

<
l
2
; r ¼ a

�

rII
r ¼ rII

rz ¼ 0 jzj
�

>
l
2
; r ¼ a

� ð14Þ
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where

p ¼ � c11

�
þ c12 �

2c213
c33

�
e�1 ð15Þ

To obtain the solution of sub-problem II, a stress function w is introduced following the solution

technique given in the book by Lekhnitski (1981), such that

uIIr ¼ A
o2w
oroz

uIIz ¼ o2w
or2

þ 1

r
ow
or

þ B
o2w
oz2

ð16Þ

where

A ¼ � c13 þ c44
c11

B ¼ c44
c11

ð17Þ

and w should satisfy the equation

r2
1r2

2w ¼ 0 ð18Þ

Where r2
i ¼ o2=or2 þ ð1=rÞo=or þ kiðo2=oz2Þ, i ¼ 1; 2; and the constants, k1 and k2, are given by

Fig. 2. A schematic of a cylindrical rod subjected to a distributed pressure p.
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k1 ¼
d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4b

p

2
k2 ¼

d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4b

p

2
ð19Þ

in which

b ¼ c33
c11

d ¼ c11c33 � 2c13c44 � c213
c11c44

ð20Þ

Eq. (18) is obtained by substituting (16) into (6). It can be shown that p1 and p2 are either real or complex

and they are never purely imaginary (Lekhnitski, 1981). For an isotropic material, we have c11 ¼ c33,
c12 ¼ c13, c44 ¼ ðc11 � c13Þ=2 and k1 ¼ k2 ¼ 1. In this special case, Eq. (18) reduces to the well-known bi-

harmonic equation

r2r2w ¼ 0 ð21Þ

Accordingly, the stresses are written as

rII
r ¼ ðc11Aþ c13Þ

o3w
or2oz

þ ðc12Aþ c13Þ
1

r
o2w
oroz

þ c13B
o3w
oz3

rII
h ¼ ðc12Aþ c13Þ

o3w
or2oz

þ ðc11Aþ c13Þ
1

r
o2w
oroz

þ c13B
o3w
oz3

rII
z ¼ ðc13Aþ c33Þ

o3w
or2oz

�
þ 1

r
o2w
oroz

�
þ c33B

o3w
oz3

rII
rz ¼ c44ðAþ BÞ o3w

oroz2
þ o3w

or3
þ 1

r
o2w
or2

� 1

r2
ow
or

ð22Þ

Hence the problem is reduced to the determination of stress function w through the boundary conditions

(14) and (8), which will be detailed in the next section.

3.2. Solution of sub-problem II

The function w can be assumed as

w ¼ 2pa3
Z 1

0

qðkÞI0 k
ffiffiffiffiffi
k1

p r
a

� �h
þ I0 k

ffiffiffiffiffi
k2

p r
a

� �i
f ðkÞ sin kz

a
sin

kl
2a

dk ð23Þ

where I0 is the zero-order modified Bessel function of the first kind, qðkÞ and f ðkÞ are functions which will

be determined later, k1 and k2 are given by (19). It is easy to verify that this assumed form of function w
satisfies Eq. (18). The corresponding displacements and stresses can be obtained from (16) and (22) as

follows:

uIIr ¼ 2pa
Z 1

0

A
ffiffiffiffiffi
k1

p
qðkÞI1 k

ffiffiffiffiffi
k1

p r
a

� �h
þ

ffiffiffiffiffi
k2

p
I1 k

ffiffiffiffiffi
k2

p r
a

� �i
f ðkÞk2 cos kz

a
sin

kl
2a

dk

uIIz ¼ 2pa
Z 1

0

ðk1

h
� BÞqðkÞI0 k

ffiffiffiffiffi
k1

p r
a

� �
þ ðk2 � BÞI0 k

ffiffiffiffiffi
k2

p r
a

� �i
f ðkÞk2 sin kz

a
sin

kl
2a

dk

ð24Þ
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rII
r ¼ 2p

Z 1

0

½ðc11A
n

þ c13Þk1 � c13B
qðkÞI0 k
ffiffiffiffiffi
k1

p r
a

� �
þ ½ðc11Aþ c13Þk2 � c13B
I0 k

ffiffiffiffiffi
k2

p r
a

� �

þ ðc12 � c11Þ
Aa
kr

ffiffiffiffiffi
k1

p
qðkÞI1 k

ffiffiffiffiffi
k1

p r
a

� �h
þ

ffiffiffiffiffi
k2

p
I1 k

ffiffiffiffiffi
k2

p r
a

� �i�
f ðkÞk3 cos kz

a
sin

kl
2a

dk

rII
h ¼ 2p

Z 1

0

½ðc12A
n

þ c13Þk1 � c13B
qðkÞI0 k
ffiffiffiffiffi
k1

p r
a

� �
þ ½ðc12Aþ c13Þk2 � c13B
I0 k

ffiffiffiffiffi
k2

p r
a

� �

� ðc12 � c11Þ
Aa
kr

ffiffiffiffiffi
k1

p
qðkÞI1 k

ffiffiffiffiffi
k1

p r
a

� �h
þ

ffiffiffiffiffi
k2

p
I1 k

ffiffiffiffiffi
k2

p r
a

� �i�
f ðkÞk3 cos kz

a
sin

kl
2a

dk

rII
z ¼ 2p

Z 1

0

½ðc13A
n

þ c33Þk1 � c33B
qðkÞI0 k
ffiffiffiffiffi
k1

p r
a

� �

þ ½ðc13Aþ c33Þk2 � c33B
I0 k
ffiffiffiffiffi
k2

p r
a

� �o
f ðkÞk3 cos kz

a
sin

kl
2a

dk

rII
rz ¼ 2pc44

Z 1

0

ðk1

n
� A� BÞ

ffiffiffiffiffi
k1

p
qðkÞI1 k

ffiffiffiffiffi
k1

p r
a

� �

þ ðk2 � A� BÞ
ffiffiffiffiffi
k2

p
I1 k

ffiffiffiffiffi
k2

p r
a

� �o
f ðkÞk3 sin kz

a
sin

kl
2a

dk

ð25Þ

In order to satisfy boundary condition (14), functions qðkÞ and f ðkÞ are found to be

qðkÞ ¼ � ðk2 � A� BÞ
ffiffiffiffiffi
k2

p
I1ðk

ffiffiffiffiffi
k2

p
Þ

ðk1 � A� BÞ
ffiffiffiffiffi
k1

p
I1ðk

ffiffiffiffiffi
k1

p
Þ

ð26Þ

f ðkÞ ¼ � 1

pk4
½ðc11A



þ c13Þk1 � c13B
qðkÞI0 k

ffiffiffiffiffi
k1

p� �
þ ½ðc11Aþ c13Þk2 � c13B
I0 k

ffiffiffiffiffi
k2

p� �

þ ðc12 � c11Þ
A
k

ffiffiffiffiffi
k1

p
qðkÞI1 k

ffiffiffiffiffi
k1

p� �h
þ

ffiffiffiffiffi
k2

p
I1 k

ffiffiffiffiffi
k2

p� �i��1

ð27Þ

In the derivation of (27), we have used the following formula:

Z 1

0

1

k
cos

kz
a

sin
kl
2a

dk ¼

p
2

for jzj < l
2

0 for jzj > l
2

8><
>: ð28Þ

qðkÞ can be shown to have another form of expression,

qðkÞ ¼ � ½ðc13Aþ c33Þk2 � c33B

ffiffiffiffiffi
k1

p
I1ðk

ffiffiffiffiffi
k2

p
Þ

½ðc13Aþ c33Þk1 � c33B

ffiffiffiffiffi
k2

p
I1ðk

ffiffiffiffiffi
k1

p
Þ

ð29Þ

It is therefore easy to check by using (29) or (26) that rII
z and rII

rz satisfy the stress-free boundary con-

ditions at infinity in the sense of Saint-Venant principle, i.e.,
R
s r

II
z ds ¼ 0 and

R
s r

II
rz ds ¼ 0, where s denotes

the circular cross section of the rod.

3.3. Elastic strain energy

The total solution of the original problem is obtained from (9) by superposing the solutions of sub-

problems I and II. The total elastic strain energy W of the rod can be given as (Mura, 1987)
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W ¼ 1

2

Z
V

rije
e
ij dV ¼ � 1

2
½ðrr þ rhÞe�1 þ rze

�
2
VX ð30Þ

where V is the entire domain of the rod and VX represents the volume of the inclusion ðVX ¼ pa2lÞ; eeij is the
elastic strain, rr, rh and rz denote the average of stresses rr, rh and rz over the inclusion X:

rr ¼
1

VX

Z
X

rr dV rh ¼
1

VX

Z
X

rh dV rz ¼
1

VX

Z
X

rz dV ð31Þ

From our above solution it is easy to show that

rr þ rh ¼ �2 c11

�
þ c12 �

2c213
c33

�
e�1H

l
a

� �

rz ¼ 0

ð32Þ

with

H
l
a

� �
¼ 1þ 4a

l

Z 1

0

kf ðkÞgðkÞ sin
kl
2a

� �2

dk ð33Þ

where f ðkÞ is given in (27) and

gðkÞ ¼ ½ðc11Aþ c13Þk1 � c13B
ffiffiffiffiffi
k1

p qðkÞI1 k
ffiffiffiffiffi
k1

p� �
þ ½ðc11Aþ c13Þk2 � c13B
ffiffiffiffiffi

k2

p I1 k
ffiffiffiffiffi
k2

p� �

þ ½ðc12Aþ c13Þk1 � c13B
ffiffiffiffiffi
k1

p qðkÞI1 k
ffiffiffiffiffi
k1

p� �
þ ½ðc12Aþ c13Þk2 � c13B
ffiffiffiffiffi

k2

p I1 k
ffiffiffiffiffi
k2

p� �
ð34Þ

Hence the elastic strain energy of the rod can be obtained as

W ¼ c11

�
þ c12 �

2c213
c33

�
ðe�1Þ

2H
l
a

� �
VX ð35Þ

where VX ¼ pa2l is the volume of the inclusion. Since the elastic strain energy is always positive, it requires
that c11 þ c12 � 2c213=c33 > 0, which is also the condition for a tensile lateral pressure given by (14) and (15).

One can see from (35) that Hðl=aÞ serves as the shape factor of the cylindrical inclusion in the rod. In fact,

Hðl=aÞ plays the similar role as the Eshelby�s tensor Sijkl for ellipsoidal inclusions (Eshelby, 1957). For given
a, e�1, c11, c12, c13, c33 and c44, W is a function of l only.

4. Discussions and examples

Some characteristics of the solution can be observed, as follows:

(1) It should be noted that the derived solution for the transversely isotropic case does not apply for the

isotropic case due to the degeneracy of the Bessel functions. For isotropic cases, k1 ¼ k2 ¼ 1, and

the two Bessel function terms become degenerate. Accordingly, the expressions, (24), (25) and (30),

of displacements, stresses and elastic strain energy are not valid for isotropic cases. The solution for

the isotropic case is to add a new Bessel function term that depends on I1ðkr=aÞ in the function w.
The detail derivation of the solution of the isotropic case has been given in our previous paper (Zhong
et al., 2000).

(2) We have pointed out in Section 3.1 that p1 and p2 are either real or complex. When p1 and p2 are com-

plex they are complex conjugates. By inspection of expressions (24), (25) and (30), and resolving all
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complex terms into their real and imaginary parts, it can be found that the imaginary parts are totally

cancelled each other and only the real parts are left. Therefore, the obtained displacements, stresses and

elastic strain energy are real.

(3) The axial component of eigenstrain e�z has no contribution to the stresses and the total elastic strain en-
ergy of the rod. It induces only an axial displacement of the rod.

(4) It should be noted that the inclusion-matrix system developed in this paper is a simplified model with

several assumptions. For example, the inclusion is assumed to have the same elastic properties as the

matrix, but the martensite and austenite phases in a real SMA are known to have different elastic mo-

duli. Also, the assumed planar interface between phases is a rather strong constraint of the kinematics

across a transformation front. Other morphologies of the interface might be energetically more favor-

able. These factors must be further incorporated into the model if a quantitative comparison with the

test data of a real SAM is to be made.

As an example, we consider the case with c12=c11 ¼ c13=c11 ¼ 3=7, c44=c11 ¼ 2=7 and c33=c11 ¼ 0:5; 1:5; 2.
Figs. 3 and 4 show the variation of stresses rr and rz (normalized by c11e�1) along the positive z-axis (for

r ¼ 0, zP 0, we have rr ¼ rh and szr ¼ 0) for l=a ¼ 10. In the figures the case of an isotropic material

(c12=c11 ¼ c13=c11 ¼ 3=7, c44=c11 ¼ 2=7 and c33=c11 ¼ 1) is also depicted based on the solution obtained by

Zhong et al. (2000). It can be observed that both rr and rz concentrate near the inclusion-matrix interface

ðz ¼ 5aÞ and decrease rapidly to zero away from the interface. The stress rr has a jump across the interface

while rz is still continuous across the interface. The greater c33=c11 value, the higher the stress concentration
near the interface. This means that the stiffening of the rod along the longitudinal direction or the softening

in the transversal direction will increase the stress concentrations. There is almost no interaction between

the stress fields of the two neighboring interfaces for the considered case l=a ¼ 10. However, when the two

Fig. 3. The variation of stresses rr normalized by c11e�1 along the positive z-axis when l ¼ 10a.
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Fig. 4. The variation of stresses rz normalized by c11e�1 along the positive z-axis when l ¼ 10a.

Fig. 5. The variation of stresses rr normalized by c11e�1 along the positive z-axis when l ¼ 2a.
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Fig. 6. The variation of stresses rz normalized by c11e�1 along the positive z-axis when l ¼ 2a.

Fig. 7. The variation of the elastic strain energy W (normalized by a3c11e�21 ) of the rod as a function of the normalized length of the

inclusion l=a.
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interfaces come closer, the interaction of the stress fields of the neighboring interfaces becomes obvious.

This phenomenon can be observed in Figs. 5 and 6 which show the variation of stresses rr and rz (nor-

malized by c11e�1) along the positive z-axis (r ¼ 0; zP 0) for l=a ¼ 2. It is seen that the stresses in the center

region of the inclusion do not vanish due to the interaction of the interfaces, and the stress concentration
increases as the two interfaces approach each other. Fig. 7 shows the variation of the elastic strain energy W
(normalized by a3c11e�21 ) of the rod as a function of the normalized length of the inclusion l=a for the same

problem. The normalized elastic strain energy for an isotropic material (c12=c11 ¼ c13=c11 ¼ 3=7; c44=c11 ¼
2=7 and c33=c11 ¼ 1) is also calculated based on the solution by Zhong et al. (2000) and depicted in the same

figure. Several typical features of the normalized elastic strain energy can be identified. The normalized

elastic strain energy increases monotonically and reaches a peak value as the inclusion grows. Further

growth of the inclusion causes a decrease in the elastic strain energy and very quickly approaches a steady

value. The normalized elastic strain energy increases with the increase of the ratio c33=c11. This reveals that
the rod will have higher elastic strain energy if the rod is stiffer along the longitudinal direction or softer in

the transversal direction.

5. Summary

An analytical solution is obtained for the axisymmetric deformation of a transversely isotropic rod

containing a single cylindrical inclusion with uniform eigenstrains by means of the principle of superpo-
sition. The original problem is divided into two sub-problems to derive the analytical expressions for the

displacements, stresses and elastic strain energy of the rod. The effects of microstructural parameters and its

evolution on the elastic stress and strain fields as well as the strain energy of the rod are quantitatively

demonstrated through examples. The results show that the stiffening of the rod along the longitudinal

direction or the softening in the transversal direction will increase the stress concentrations near the in-

terface between the inclusion and the matrix. It also reveals that the rod will have higher elastic strain

energy if the rod is stiffer along the longitudinal direction or softer in the transversal direction.
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